Exonic Mutations of TSC2/TSC1 Are Common but Not Seen in All Sporadic Pulmonary Lymphangioleiomyomatosis

To the Editor:

Pulmonary lymphangioleiomyomatosis (LAM) is a rare, progressive disease affecting almost exclusively women that is seen in both patients with tuberous sclerosis complex (TSC) and those without TSC, the latter termed sporadic LAM (S-LAM) (1–5). LAM is characterized by infiltration of the lung parenchyma by neoplastic spindle-shaped cells with combined smooth muscle and melanocytic differentiation, and is associated with both extensive involvement of lymphatic channels by similar cells in nearly all cases, and occurrence of renal angiomyolipoma in 30 to 50% of S-LAM cases (3). Past seminal publications have identified mutations and loss of heterozygosity (LOH) in lipoma in 30 to 50% of S-LAM cases (3). Past seminal publications have included the American Thoracic Society statement: treatment of fungal infections in adult pulmonary and critical care patients. Am J Respir Crit Care Med 2011;183:96–128.

K. R. B. is an American Lung Association Scholar (Dalsemer Research Grant, DA-196629-N). Supported by NHLBI/NIH grants HL077514 (to L.S.), HL048730 (to L.S.), and HL100655-01 (to D.J.K.), NINDS/NIH grant 2R37NS031535-14 (to D.J.K.), and the LAM Treatment Alliance (to D.J.K.). K.R.B. is an American Lung Association Interstitial Lung Disease Scholar (Datiere Research Grant, DA-196629-N).

Author Contributions: K.R.B., X.Z., D.J.K, and L.S. contributed to study conception and design; K.R.B., W.Q., X.Z., X.Z., L.G., Y.C., E.H., D.J.K., and L.S. contributed to conduct research; K.R.B., W.Q., X.Z., L.G., E.H., D.J.K., and L.S. contributed to analyze and interpret data; K.R.B., D.J.K, and L.S. drafted the manuscript and all authors contributed to the report and approved the version submitted. Supported by NHLBI/NIH grants HL077514 (to L.S.), HL048730 (to L.S.), and RC1 HL100655-01 (to D.J.K.), NINDS/NIH grant 2R37NS031535-14 (to D.J.K.), and the LAM Treatment Alliance (to D.J.K.). K.R.B. is an American Lung Association Interstitial Lung Disease Scholar (Datiere Research Grant, DA-196629-N). This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

We searched for TSC2 mutations in 10 S-LAM patients that had lung transplant using a combination of laser capture microdissection (LCM) and next-generation sequencing (NGS) (see online supplement). Examination of formalin-fixed paraffin-embedded sections showed classic features of LAM, with multiple cysts and disseminated LAM nodules, the cells of which were smooth muscle actin (SMA) and HMB45 positive (Figures S8A–S8G in the online supplement). LCM guided by SMA immunohistochemistry was performed on frozen sections to collect LAM cells from nodules (Figure E1) and avoid inclusion of lymphatic channels, lymphocytes, and other cell types (Figures E3 and E4). After DNA extraction and amplification, NGS was performed using either the 454 or Illumina platforms (Reference 13 and online supplement). High read depth was achieved across the coding region of TSC2 (median, 486; >200 in 96% of exons), enabling detection of low-frequency sequence variants. Nine different pathogenic sequence variants were detected in TSC2 in eight different sporadic LAM samples, at frequencies ranging from 4 to 60% (Table 1), with most seen at microsatellites (MS) (Figures 1A–1D).

Figure 1. Hamartin and tuberin expression and lack of phosphorylated 56K (p-S6K) expression in lymphangioleiomyomatosis (LAM) nodules from two LAM cases with no mutation identified. Three LAM lesions are shown. (A–D) Two cases, 9023 and 9030, had no mutations found in either TSC1 or TSC2, and expressed hamartin and tuberin. (E and F) In contrast, case 9036 had no expression of those proteins, and had a high level of TSC2 mutation with LOH. (G–I) Cases 9023 (G) and 9030 (H) do not express p-S6K, whereas case 9036 (I) shows strong p-S6K immunopositivity. (J and K) Hamartin and tuberin expression in uninvolved lung parenchyma and (L and M) in prostate carcinoma (from tissue array control included in every slide). (N–P) p-S6K expression in uninvolved lung parenchyma (note – reactive alveolar epithelium in upper left corner), prostate carcinoma (negative), and breast carcinoma (positive), respectively. Original magnifications, ×100.
TABLE 1. MUTATIONS AND SINGLE-NUCLEOTIDE POLYMORPHISMS DETECTED IN TSC1 AND TSC2 IN 10 SPORADIC LAM SAMPLES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Method</th>
<th>TSC2 Mutation</th>
<th>Allelic Frequency</th>
<th>Mutation Effect</th>
<th>TSC2 SNPs</th>
<th>LOH</th>
<th>MLPA Copy #</th>
<th>TSC1</th>
<th>HMB45 Expression*</th>
</tr>
</thead>
<tbody>
<tr>
<td>9016</td>
<td>Illumina</td>
<td>c.5024C>T</td>
<td>16%</td>
<td>p.1675P > L missense</td>
<td>2</td>
<td>No</td>
<td>ND</td>
<td>ND</td>
<td>5+</td>
</tr>
<tr>
<td>9020</td>
<td>454</td>
<td>c.781C>T</td>
<td>50%</td>
<td>p.261R > W missense</td>
<td>1</td>
<td>No</td>
<td>NL</td>
<td>ND</td>
<td>1+</td>
</tr>
<tr>
<td>9022</td>
<td>454</td>
<td>c.3610+1G>A</td>
<td>15%</td>
<td>Splice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9023</td>
<td>454</td>
<td>c.789_806del18</td>
<td>8%</td>
<td>In-frame deletion</td>
<td>0</td>
<td>No</td>
<td>NL</td>
<td>ND</td>
<td>3+</td>
</tr>
<tr>
<td>9030</td>
<td>454</td>
<td>None</td>
<td></td>
<td></td>
<td>3</td>
<td>No</td>
<td>NL</td>
<td>None</td>
<td>5+</td>
</tr>
<tr>
<td>9034</td>
<td>454</td>
<td>c.5127delC</td>
<td>39%</td>
<td>Truncation</td>
<td>4</td>
<td>No</td>
<td>NL</td>
<td>ND</td>
<td>1+</td>
</tr>
<tr>
<td>9036</td>
<td>454</td>
<td>c.1947-4_2030del88</td>
<td>60%</td>
<td>Truncation</td>
<td>1</td>
<td>Yes³</td>
<td>NL</td>
<td>ND</td>
<td>1+</td>
</tr>
<tr>
<td>9038</td>
<td>454</td>
<td>c.18577C>T</td>
<td>4%</td>
<td>p.Q613X</td>
<td>1</td>
<td>No</td>
<td>NL</td>
<td>ND</td>
<td>2+</td>
</tr>
<tr>
<td>9043</td>
<td>Illumina</td>
<td>c.3167delG</td>
<td>18%</td>
<td>Truncation</td>
<td>14</td>
<td>Yes³</td>
<td>NL</td>
<td>ND</td>
<td>1+</td>
</tr>
<tr>
<td>9059</td>
<td>454</td>
<td>c.1513C>T</td>
<td>16%</td>
<td>p.R505X</td>
<td>5</td>
<td>No</td>
<td>NL</td>
<td>ND</td>
<td>1+</td>
</tr>
</tbody>
</table>

*Definitions of abbreviations: LAM = lymphangioleiomyomatosis; LOH = loss of heterozygosity; MLPA = multiplex ligation-dependent probe assay; ND = not done; NL = normal; SNPs = single-nucleotide polymorphisms.

1HMB45 expression is scored on a qualitative scale from 1+ (weak) to 5+ (strong).

2This sample had one TSC1 SNP.

3This sample showed a 2:1 allelic ratio in sequencing reactions, consistent with LOH, but only for one of five heterozygous SNPs found in this sample.

4This sample showed evidence for LOH by Sanger sequencing of the deletion mutation, in that there was increased frequency of the deletion allele in comparison to the wild-type allele.

5LOH was seen in this sample, with a skewed allele ratio for 14 TSC2 intragenic SNPs, for which the average minor allele frequency was 0.42 in comparison to an average minor allele frequency of 0.47 for control sample SNPs (P < 0.001).

Recently the Multicenter International LAM Efficacy of Sirotimus (MILES) trial demonstrated that rapamycin (sirolimus), an mTORC1 inhibitor that blocks the pathway activated by loss of tuberin (15), was an effective therapy for treatment of LAM (16). However, it is notable that continuing FEV1 decline was seen in 50% of patients on rapamycin therapy. It is possible that some of these nonresponders do not have loss of TSC2 with activation of mTORC1 as a fundamental pathogenic mechanism for LAM development, consistent with our data.

Author disclosures are available with the text of this letter at www.atsjournals.org.

KAMESWARA RAO BADRI, Ph.D.,*†
LING GAO, M.D.
ELIZABETH HYJEK, M.D.
NOA SCHUGER, B.A.
LUCIA SCHUGER, M.D.,‡
University of Chicago
Chicago, Illinois

WEI QIN, Ph.D.*
YVONNE CHEKALUK, M.S.
DAVID J. KWIATKOWSKI, M.D., Ph.D.‡
Brigham and Women’s Hospital
Boston, Massachusetts

Harvard Medical School
Boston, Massachusetts

XIAONING ZHE, M.D., Ph.D.
Wayne State University
Detroit, Michigan

References

*These authors contributed equally to this work.

† Present address: OSRA, Savannah State University, 3219 College Street, Savannah, GA 31404.

‡ These authors contributed equally to this work.

Copyright © 2013 by the American Thoracic Society
ONLINE DATA SUPPLEMENT

Methods

Histological analysis of formalin-fixed samples

Three or more paraffin blocks from at least 2 different lung lobes were analyzed per case. Serial 4 µm sections were stained with Hematoxylin and Eosin (H&E), cut for immunohistochemistry studies, and stained with Masson-trichrome stain from each block following protocols in routine use in our diagnostic pathology lab. Collagen was identified by Masson trichrome staining using the Trichrome II Blue Staining Kit (Ventana Medical Systems, Tucson, AZ), in accordance with the manufacturer's instructions. Monoclonal mouse antibodies against human: smooth muscle actin (SMA) (clone 1A4; cat. no. M0851), lymphocytes (CD45, clones 2B11+ PD7/26; cat. no. M0701), lymphatic endothelium (clone D2-40; cat. no. M361959), gp100 (clone HMB45, cat. no. M0634) and vascular endothelium (CD31, clone JC70A, cat. no. M0823) were purchased from DAKO North America (Carpinteria, CA). Immunohistochemistry was performed on the automated Bond™ system (Leica-Microsystems, Buffalo Grove, IL) according to the modified manufacturer protocol, including 25 min incubation with primary antibodies, 15 min post-primary step and 25 min incubation with HRP- polymer using Bond™ Polymer Refine Detection system (Leica Biosystems Newcastle Ltd), following heat antigen retrieval. The peroxidase reaction was developed using 3,3 diaminobenzidine (DAB) provided in the kit. Polyclonal rabbit antibodies against tuberin (Santa Cruz, CA, cat. no. SC-893), hamartin (Abcam, cat. no. AB25882) and p-S6K (Abcam, cat. no. ab59208) were used at 1:100 dilution according to standard protocols used in diagnostic pathology
lab. The slides were examined and interpreted by 2 independent pathologists (E. H. and L.S.).

Next generation sequencing (NGS)

454 NGS

Whole genome amplified DNA (WGA-DNA) from LAM lesions was analyzed for mutations in *TSC1* and *TSC2* using deep sequencing by the 454 technique (Roche Applied Sciences, Indianapolis, IN), as described in detail elsewhere (1). In brief, exons were amplified using specially designed oligonucleotide primers, consisting of a 15-28 bp target-specific sequence at their 3’ end, and a common 19 bp region that was used in subsequent clonal amplification and sequencing reactions at their 5’ end. Amplicons ranged in size from 135 to 393 bp. PCR was performed on 10-25 ng of WGA-DNA using the FastStart High Fidelity PCR System (Roche Applied Sciences) and standard thermocycling conditions. Amplicon products were purified, quantified, and pooled at an equimolar ratio for sequencing. Single molecules were clonally amplified on beads in an oil emulsion; beads were then isolated and loaded into picotiter plates for pyrosequencing (2, 3). Individual patient samples were multiplexed in sets of 8, and sequencing was performed on the Genome Sequencer FLX system (Roche Applied Sciences). The median and mean number of reads was 486 and 506, respectively, at the coding and splice site nucleotides of *TSC2*. 95.5% of amplicons had a read depth >200, and 98.6% had a read depth >100.

454 sequence data was analyzed using Amplicon Variant Analysis (AVA; Roche Applied Sciences) software to identify sequence variants in *TSC1* and *TSC2*. As described
previously (1), many low-frequency sequence variants are detected in 454 analyses, and we eliminated from further consideration those variants that were: (1) detected in >1 sample at low frequency; (2) detected in <5 sequencing reads; and (3) detected only in poor quality reads by manual review.

Illumina NGS

Next generation sequencing of most of the genomic extent of TSC2 was performed on the Illumina GAIIx or HiSeq2000 (Illumina, San Diego, CA). Long-range PCR was performed on LAM WGA-DNA using 4 primer sets that cover all of the coding exons and most of the intronic sequence of TSC2, a total of 34,770 nt. Amplicons were then purified using AMPure beads and used to prepare a small fragment library for Illumina sequencing. Amplicons were concatenated by ligation with T4 DNA Ligase, purified, and sheared in a Covaris E210 instrument at settings of 10% duty cycle, intensity of 5, and 150 cycles per burst to a size of 200-400 bp (Covaris, Woburn, MA). Sheared DNA was then end-repaired with the End-It kit (Epicenter, Madison, WI), A-tailed with Klenow, and purified using AMPure beads. Illumina adaptors were annealed and ligated. Fragments were minimally amplified, purified using AMPure beads, minimally reamplified with primers encoding an index sequence (Illumina), and purified using AMPure beads. Libraries from different samples with different indices were then mixed at an equimolar ratio and sequenced on an Illumina GAIIx or HiSeq2000 sequencer for 50-75 nt reads.

Sequencing data output was analyzed using a combination of standard tools and custom software to enable detection of sequence variants at >1% frequency. The primary data were deconvoluted using the index sequences to individual sample files and converted to FASTQ format, aligned to the human genome using bwa-0.5.8c (Burrows-Wheeler
Alignment) (2), filtered to eliminate reads of low quality and to reduce redundancy to a uniform 50 reads starting at each nucleotide position of interest in each direction (C. Pedamallu, Broad Institute), sorted and converted to bam and bai files using Picard tools. The data were then analyzed for sequence variants using tools from the Genome Analysis Toolkit (GATK) (3), including IndelGenotyperV2 and Unified Genotyper, to identify both indels and single nucleotide variants. A second approach was used in parallel to analyze the sequence data, with capture of read calls at all positions using Pileup (SAMtools) and GetCalls (M. Lawrence, Broad Institute); those data were then analyzed in Matlab. The output from these analyses was reviewed in comparison with those from other samples, including controls, to exclude artifacts derived from the sequencing process. All variants seen at a frequency of $>1\%$ more than that seen in other samples were directly reviewed using the Integrative Genomics Viewer (4) (IGV; www.broadinstitute.org/software/igv/) to help confirm bona fide variant calls and to exclude sequencing artifacts. A median read depth for all nucleotides of the TSC2 coding exons and nearby introns of $>2,000$ was achieved by Illumina NGS, and $>94\%$ of these nucleotides were covered at a read depth of $>1,000$.

Validation of NGS findings

Single-nucleotide variants and indels that were identified as novel and/or of possible significance by either 454 or Illumina NGS were confirmed by secondary analysis of the initial non-WGA DNA sample, using Sanger bidirectional sequencing in the case of variants seen at $>20\%$ allele ratio and SNaPshot analysis for those seen at $<20\%$ allele ratio. SNaPshot analysis was performed as described elsewhere (1). Primer extension products were analyzed on an ABI 3100 sequencer (Applied Biosystems, Carlsbad, CA), and the proportion of alleles was quantified using GeneMapper version 3.0 (Applied
Biosystems). In this analysis, small peaks were seen for variant nucleotides in some cases because of spontaneous base misincorporation. However, comparison with control samples permitted discrimination of bona fide variants at allele frequencies as low as 5% or less. The allele frequency of mutant alleles was determined as $M/(M + W)$, where M and W are the peak areas of the mutant and wild-type allele products, respectively, after subtraction of the signal seen in control samples. All SNaPshot experiments were replicated at least once.

Supplemental Figure Legends

Supplemental Figure E1. Laser capture microdissection (LCM) of nodular lymphangioleiomyomatosis (LAM) lesions. A, Reference slide of a LAM lesion immunostained for smooth muscle α-actin (SMA); narrow strips (arrows) were avoided. B, Slide of a representative LAM lesion with hematoxylin and eosin (H&E) stain used for LCM. C, Slide shown in panel B after LCM was performed. D, Slide of a representative LAM lesion with H&E stain showing the laser (pink line). E, Inset shown in panel D. F, Slide shown in panel D after LCM was performed. Magnifications: A-C: X 100, D: X 200, E, F: X 400.

Supplemental Figure E2. Differences in the expression of melanocytic protein gp100 (HMB-45) in representative lymphangioleiomyomatosis (LAM) lesions. The highest proportion of HMB45–positive cells (>90% of all LAM cells) was seen in case 9023 (C), whereas the lowest proportion of HMB-45-positive cells (<5% of all LAM cells) was seen in case 9030 (F). A, D, LAM lesions stained with hematoxylin and eosin (H&E). B, E, LAM lesions stained for smooth muscle α-actin (SMA), showing that the lesions are largely composed of SMA-positive cells (brown). C, F, LAM lesions stained for HMB-45.
Cells positive for HMB-45 (brown) were identified in all lesions, varying in number both between cases and between lesions within the same case. Magnifications: X 100.

Supplemental Figure E3. Lymphatic channels and lymphatic endothelial differentiation in lymphangioleiomyomatosis (LAM) lesions. H&E examination and IHC with antibody D2-40 against podoplanin (a marker for lymphatic endothelium) demonstrated that LAM lesions contained few to multiple lymphatic channels of various diameters (brown), some of them with slit-like lumens (D, arrows). Nevertheless, the overall lymphatic channel density was similar among the 10 cases. A-C are H&E, SMA, and HMB-45 immunostaining of corresponding serial sections from case 9016. Surprisingly, in all cases numerous LAM cells showed staining for D2-40, albeit weaker than lymphatic endothelial cells (D). Magnifications: X 100.

Supplemental Figure E4. Variable presence of lymphocytes in lymphangioleiomyomatosis (LAM) lesions. LAM lesions contained lymphocytes in all 10 cases, ranging from few (A-D) to multiple (E and inset with arrows pointing at lymphocytes) to numerous (F). A, C, E, F, Hematoxylin and eosin stain (H&E); B, D, Anti-CD45 stain for lymphocytes (brown). Lymphocytes are found either diffuse (E) or in clusters (F). When the lymphocytes were numerous the portions of LAM lesions or entire LAM lesion were not collected. Magnifications: X 100.

Supplemental Figure E5. Collagen deposition in LAM. Two lesions are shown, case #9036 (left, non-collagenized) and 9038 (right, high collagenization). A, E, Hematoxylin and eosin (H&E) stain; B,F, anti-smooth muscle α-actin (SMA) stain; C, G, anti-melanocytic protein gp100 (HMB45) stain; D, H, Masson-Trichrome stain for collagen (blue). Most of the collagenized areas are acellular or contain a small number of spindle-
shaped cells, which are generally positive for SMA and HMB45 (brown) and therefore consistent with LAM cells. Magnifications: X 100.

Supplemental Figure E6. Sequencing confirmation of a large deletion in TSC2 and an LOH event. A, Sequencing analysis shows that a large deletion in TSC2 (del1947-4-2030) was more common than the wild type allele in sample 9036. B, Sequencing analysis shows unbalanced allelic representation in the SNP 2580T>C of TSC2 in sample 9034.

Supplemental Figure E7. Confirmation of mosaic mutations in TSC2 by SNaPshot single base extension sequencing. LAM (top) and control (bottom) samples are shown for 4 different mutations in TSC2 detected by deep sequencing. The mutant allele frequency is shown as percent for each sample.

Supplemental Figure E8. Lymphangioleiomyomatosis (LAM) histology and immunohistochemistry analyses. A-D, F. Representative LAM lesions from all 10 LAM cases, shown in pairs. Top panel, Hematoxylin and eosin (H&E) stain; Middle panel, anti–smooth muscle α-actin (SMA) stain; Lower panel, anti–melanocytic protein gp100 (HMB45) stain. E: high magnification of inset from figure 1D showing HMB-45 positive cells (brown, arrows). G: high magnifications of insets 1-3 from figure 1F. Upper left inset shows HMB-45 positive cells (arrows) in case 9043. Upper right inset shows a LAM lesion in case 9059 demarcated in green. LAM lesions in this case are not clearly distinguished at the low magnification shown in previous figure. Lower right inset shows HMB-45 positive cells (brown) in same lesion. Magnifications: X100, insets: X 400.
Supplemental Figure E9. Location of most lymphocytes in aggregates outside LAM lesions. Lymphocyte aggregates were common in all LAM lung specimens, either in clusters (A–D), near blood vessels (C), and bronchi (D) or diffusely thickening (E, F) the alveolar wall. A–E, Representative LAM lesions stained with hematoxylin and eosin (H&E) and F, with anti-CD45 for lymphocytes (brown). Magnifications: X100.

Supplemental Figure E10. LAM lesions from case 9036 (highest mutation frequency rate and LOH) are either negative for tuberin (A) or show sparsely distributed tuberin-positive cells (B). Control case 9023 (NMI) shows presence of tuberin in all LAM cells (C).

References

Supplemental Figure E6

A 1974-4 – 2030 del

Wild CTTCTGCAGGGAGCCAGAGAGAGAGGG
Mutat CTTCTGCCTCTGCGGGCTGGGGTGCCG

B c.2580 T>C

AGGAACTTTTGCCGCGGGAG
Supplemental Figure E7

LAM

9020 c.3610+1G>A 19.6%

9022 c.789_806del18 10.7%

9036 c.1837C>T 5.7%

9034 c.5127delC 43%

CONTROL

2.8%

0

0

4.2%
Supplemental Figure E8D

9036
H&E

9038
SMA

HMB45
Supplemental Figure E8E

9036
inset
Supplemental Figure E8G

9043 inset

9059 insets
Supplemental Figure E10

tuberin

A

B

C