Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic Renal Cell Carcinoma

David J. Kwiatkowski*1,2,3, Toni K. Choueiri*1,2,3, André P. Fay1,4, Brian I. Rini5, Aaron R. Thorner1,6, Guillermo de Velasco1, Magdalena E. Tyburczy2, Lana Hamieh2, Laurence Albiges1,7, Neeraj Agarwal8, Thai H. Ho9, Jiaxi Song10, Jean-Christophe Pignon3,10, Pablo M. Barrios4, M. Dror Michaelson11, Eliezer Van Allen1,2,3, Katherine M. Krajewski12, Camillo Porta13, Sumanta Pal14, Joaquim Bellmunt1,2,3, David F. McDermott3,15, Daniel Y. C. Heng16, Kathryn P. Gray17, Sabina Signoretti*1,3,10

1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, US
2Department of Medicine, Brigham and Women’s Hospital, Boston, MA, US
3Harvard Medical School, Boston, MA, US
4PUCRS School of Medicine, Porto Alegre, Brazil
5Department of Medical Oncology, Cleveland Clinic, Cleveland, US
6Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, US
7Institut Gustave Roussy, Villejuif, France
8Department of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
9Department of Medical Oncology, Mayo Clinic, Arizona, Scottsdale, AZ, US
10Department of Pathology, Brigham and Women’s Hospital, Boston, MA, US
11Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
12Department of Radiology, Dana Farber Cancer Institute, Boston, MA
13San Matteo University Hospital Foundation, Pavia, Italy
14Department of Medical Oncology & Therapeutics Research, City of Hope, US
Running title: mTOR pathway mutations and response to rapalogs in RCC

Keywords: mTOR, mTOR inhibitors, everolimus, temsirolimus, predictors of response, renal cell carcinoma, rapalog

Funding: This work was supported in part by NIH/NCI DF/HCC Kidney Cancer SPORE P50 CA101942 to David F. McDermott, David J. Kwiatkowski, Sabina Signoretti and Toni K. Choueiri, NIH/NCI R21 grant (R21CA191687) to David J. Kwiatkowski, Sabina Signoretti and Toni K. Choueiri, and by the Trust Family, Loker Pinard and the Michael Brigham Funds, for Kidney Cancer Research to Toni K. Choueiri.

Corresponding authors:

David J Kwiatkowski, MD, PhD
Brigham and Women's Hospital and Dana-Farber Cancer Institute
Phone: 617-355-9005; Fax: 617-355-9016; email: dk@rics.bwh.harvard.edu

Or

Toni K. Choueiri, MD
Brigham and Women's Hospital and Dana-Farber Cancer Institute
Phone: 617-632-5456; Fax: 617-632-2165; email: toni_choueiri@dfci.harvard.edu

Or

Sabina Signoretti, MD
Brigham and Women's Hospital and Dana-Farber Cancer Institute
Phone: 617-525-7437; fax: 617-264-5169; email: ssignoretti@partners.org
Conflicts of interest: M.D. Michaelson and D.F. McDermott are consultants/advisory board members for Novartis and Pfizer. D.J. Kwiatkowski is a consultant/advisory board member for Novartis and leads a Novartis-sponsored clinical trial. L. Albiges received research funds from Novartis and Pfizer, and is a consultant/advisory board member for Novartis, Pfizer, Bayer, Bristol-Myers Squibb. Neeraj Agarwal is a consultant for Pfizer. Sumanta Pal is a consultant for Pfizer and Novartis. Camillo Porta is a consultant and/or speaker for Novartis, Pfizer, Bayer, Roche, Exelixis and BMS. T.K. Choueiri received research funds from Pfizer, GSK, Novartis, BMS, Merck, Exelixis, Roche, Astra Zeneca, Tracon and is a consultant/advisory board member for Pfizer, GSK, Novartis, Merck and Bayer. No potential conflicts of interest were disclosed by the other authors.

Count: 3995 words, 1 figure, 4 tables, and 4 supplementary data files
Statement of translational relevance

Mammalian target of rapamycin (mTOR) inhibitors, everolimus and temsirolimus, are approved in metastatic renal cell carcinoma (mRCC), but only a small subset of patients derives clinical benefit. Recent data have suggested that mutations in mTOR pathway genes might be associated with response to rapalogs in several malignancies, including RCC. We evaluated a large international cohort of mRCC patients with available pre-treatment specimens who were treated with mTOR inhibitors and had distinct clinical outcomes. We found that mutations in *MTOR*, *TSC1*, or *TSC2* were more common in patients who experienced a response from rapalogs than in those with rapid progression. This association was even stronger in the subset of patients with partial response. Identification of biomarkers of response to mTOR inhibitors may lead to improved patient selection.
Abstract

Purpose: We examined the hypothesis that mutations in mTOR pathway genes are associated with response to rapalogs in metastatic renal cell carcinoma (mRCC).

Experimental Design: We studied a cohort of mRCC patients who were treated with mTOR inhibitors with distinct clinical outcomes. Tumor DNA from 79 subjects was successfully analyzed for mutations using targeted next generation sequencing of 560 cancer genes. Responders were defined as those with partial response (PR) by RECIST v1.0 or stable disease with any tumor shrinkage for six months or longer. Non-responders were defined as those with disease progression during the first three months of therapy. Fisher's exact test assessed the association between mutation status in mTOR pathway genes and treatment response.

Results: Mutations in MTOR, TSC1 or TSC2 were more common in responders, 12 (28%) of 43, than non-responders, 4 (11%) of 36 (p=0.06). Mutations in TSC1 or TSC2 alone were also more common in responders, 9 (21%), than non-responders, 2(6%), (p=0.05). Furthermore, 5 (42%) of 12 subjects with PR had mutations in MTOR, TSC1 or TSC2 compared to 4 (11%) of 36 non-responders (p=0.03). Eight additional genes were found to be mutated in at least 4 of 79 tumors (5%); none were associated positively with response.

Conclusion: In this cohort of mRCC patients, mutations in MTOR, TSC1 or TSC2 were more common in patients who experienced clinical benefit from rapalogs than in those who progressed. However, a substantial fraction of responders (31 of 43, 72%) had no mTOR pathway mutation identified.
Introduction

The PI3K-mTOR signaling pathway is one of two main growth factor stimulated signaling cascades that regulate cell growth in many cell types. mTORC1 and mTORC2 are distinct complexes that each contain the serine/threonine kinase mTOR (mechanistic Target of Rapamycin) (1). The kinase activity of mTORC1 is regulated by both growth factor signaling and nutrient availability through distinct ras family GTPases (2-5). Growth factor regulation of mTORC1 occurs largely through regulation of the GTPase activating protein (GAP) activity of the TSC1/TSC2 protein complex for the ras family member RHEB (4, 6). Both PI3K and MAPK signaling cascades lead to phosphorylation of TSC2, reducing its GAP activity (7, 8). Nutrient sensing occurs through the Rag GTPases and is regulated by a protein complex termed GATOR1 ('GAP activity towards Rags') that functions as a GAP for the Rag proteins (9). Both RHEB and Rag proteins regulate activation of mTORC1, which consists of mTOR, raptor and mLST8 (1). Activated mTORC1 phosphorylates multiple downstream proteins, leading to complex metabolic and anabolic effects including synthesis of nucleotides, lipids, amino acids, biogenesis of ribosomes, and cap-dependent translation of cellular mRNAs (10, 11). The regulation of cap-dependent translation by mTORC1 is mediated by the mTOR-dependent phosphorylation (and inhibition) of 4E-BP1/2, an inhibitory eIF-4E binding protein (12).

mTORC1 is activated in cancer cells through multiple mechanisms, including growth factor and receptor tyrosine kinase signaling events. Genetic events that activate mTORC1 include activating mutations in PIK3CA, the gene encoding the catalytic subunit of PI3K; inactivating mutation or deletion of PTEN; activating mutation or amplification of one of the three AKT isoforms, AKT1, AKT2, AKT3; and inactivating mutation or deletion of either TSC1 or TSC2 (13). In addition, mutation or loss of DEPDC5, NPRL2, or NPRL3, which encode protein components of the GATOR1 complex, also lead to high level activation of mTORC1 (9).
Rapamycin, and related drugs collectively called rapalogs, bind to FKBP12 to inhibit mTORC1 kinase activity (14-16). In a randomized Phase 3 trial of 626 previously untreated patients with metastatic RCC and poor risk features who were randomized to either temsirolimus, a prodrug ester of rapamycin, IFN-α, or both, single-agent temsirolimus-treated patients showed significantly longer overall survival (OS) (10.9 vs. 7.3 vs. 8.4 months; p=0.0069) (17). Similarly, everolimus (RAD001), another derivative of rapamycin, showed significant improvement in progression-free survival (PFS) in comparison to placebo (PFS 4.9 vs. 1.9 months, p<0.0001) in a large randomized phase 3 trial in metastatic RCC patients who had failed treatment with VEGF-targeted TKI (18, 19). Based on these findings, inhibitors of mTORC1 are a standard therapy in RCC (20).

Unfortunately, clinical experience has shown that only a subset of RCC patients derives substantial benefit from mTORC1 inhibitor treatment. Complete responses to these drugs are extremely rare. Among those deriving significant benefit from rapalogs are those showing partial response (PR), and those that have extended disease control, even if not meeting the criteria for a PR.

Understanding the molecular basis of response to targeted therapies has gained high prominence recently as a method to both understand response and categorize patients for their likelihood of response. Mutations in \(TSC1/TSC2/MTOR\) have been shown to be associated with response to rapalog treatment in several cancer types, including a small set \((n = 5)\) of patients with RCC (21-27). Here we assess the hypothesis that mutations in selected mTOR pathway genes can predict response to rapalog therapy by performing molecular genetic analysis on a cohort of 79 RCC patients who were roughly evenly divided between those who demonstrated benefit from rapalog therapy versus those who had progression within three months of initiation of rapalog therapy.
Methods

Patients

We identified 97 mRCC patients treated with rapalogs with available pre-treatment tumor tissues and distinct clinical outcomes. Eighteen patients were excluded due to an insufficient amount of DNA or assay failure. Seventy-nine mRCC patients with successful assay results were included in this study. These included 28 patients treated on the trial of temsirolimus vs. IFN-α vs. both drugs (17) as well as 51 samples from patients treated with mTOR inhibitors between October 2007 and June 2013 at both US and non-US institutions. Patients were selected to include subjects that had either responded or rapidly progressed on rapalog therapy. For this study we defined response as either partial response (PR, by RECIST v1.0), or stable disease (SD) with any tumor shrinkage (no growth) for at least 6 months. Non-responders were patients showing progressive disease (PD) within the first 3 months of therapy (usually at first restaging), without marked toxicity leading to treatment discontinuation. All patients were treated with standard dosage of rapalogs: temsirolimus (n=41 at 25 mg IV weekly) or everolimus (n=38 at 10 mg PO daily).

Clinical-pathological data was obtained either from Pfizer through a data transfer agreement, or collected retrospectively from the institutions at which treatment was given, and included treatment received and best response to rapalog. Uniform data collection templates were used for all subjects. Institutional Review Board approval was obtained locally before tissue acquisition, processing, and provision of clinical information.

Tissue Collection, DNA Extraction and next generation sequencing

Formalin fixed paraffin-embedded (FFPE) tissue sections and/or blocks were assessed for availability of material for sequencing. All material processing and sequencing were done without the knowledge of patients’ treatment assignments or outcomes. Hematoxylin and eosin
stained slides were reviewed by an expert genitourinary pathologist (SS) and tumor areas containing at least 50% of tumor cells were selected for DNA extraction.

Targeted Sequencing

For each tumor specimen, DNA was extracted from the selected tumor areas using the QIAamp DNA FFPE Tissue Kit (QIAGEN, Valencia, CA). DNA was then subjected to targeted exon capture and sequencing using the Oncopanel_v3 cancer gene panel at the Center for Cancer Genome Discovery (CCGD) at the Dana-Farber Cancer Institute (DFCI).

OncoPanel_v3 consists of the coding exons of 560 genes of known or potential importance in cancer. Genes in the mTOR and related signaling pathways that are included in this capture set are: PIK3C2B, PIK3CA, PIK3CG, PIK3R1, PTEN, TSC1, TSC2, MTOR, RHEB, RPTOR, NPRL2, NPRL3, NF1, NF2, FLCN, RICTOR, DEPDC5, and STK11. All genes commonly mutated in clear cell RCC are also included in this panel: VHL, PBRM1, SETD2, KDM5C, BAP1, TP53, ATM, and ARID1A (28).

Sequencing libraries were prepared, as previously described, starting from 200 ng of genomic DNA with inclusion of a unique bar-code for each sample to enable pooling (29). Libraries were quantified using qPCR (Kapa Biosystems, Inc., Woburn, MA), pooled in equimass amounts to 500 ng total, and captured using the Oncopanel_v3 baitset using the Agilent SureSelect hybrid capture kit. The captured libraries were again quantified using qPCR, and sequenced on a Hiseq 2500 sequencer (Illumina Inc., San Diego, CA) in 2× 100 nucleotide (nt) paired end read mode. Primary sequence data were deconvoluted using index sequences to individual sample files and converted to FASTQ format using Picard tools. Reads were aligned to the human genome using bwa-0.5.8c (Burrows-Wheeler Alignment) (30) and filtered to eliminate reads of low quality and duplicates. The data were then analyzed for sequence variants using tools from the Genome Analysis Toolkit (GATK) (31), including IndelGenotyperV2.
and UnifiedGenotyper, to identify indels and single-nucleotide variants. A second approach was used in parallel to analyze the sequence data, with capture of read calls at all positions using SAMtools Pileup (32) followed by custom processing in Python and Matlab to determine base call frequency at each position in each read orientation for AKT1, AKT2, AKT3, MTOR, PIK3CA, PTEN, RHEB, TSC1, and TSC2. These data were then filtered to eliminate variant calls observed in only a single read orientation, or seen in multiple samples to exclude artifacts derived from the sequencing process. All variants observed at a frequency of ≥ 2% were directly reviewed using the Integrative Genomics Viewer (33) to identify bona fide variant calls and exclude sequencing or alignment artifacts.

Samples were excluded if the mean depth of read coverage for the 560 genes was < 36x or if there was a high duplicate read rate. The mean, median, and range of mean depth of read coverage for the 79 remaining samples were 129, 125, and 36-414, respectively. The mean, median, and range of % of target bases with read depth > 30x was 95%, 98%, and 60-99%, respectively.

Variants observed at any frequency in the 1000 Genomes variant server (34), the NHLBI Exome Variant Server (35), or the ExAC Exome Aggregation Consortium browser (36) were not considered further, as they were likely germline, nonfunctional variants. SNVs and indels that were identified as novel and/or of possible significance in TSC1, TSC2, MTOR, or PTEN were confirmed by Sanger bidirectional sequencing when seen observed at ≥ 5-10% allele ratio; and amplicon next generation sequencing (NGS) for those observed at < 5-10% allele ratio. Amplicon NGS was performed by NGS analysis of individual amplicons, leading to the generation of 10,000 - 1,000,000 sequencing reads. These read files as well as the primary original read files were interrogated using Unix grep with a 20 nt sequence matching the wild-type allele and the mutant allele, to determine the precise frequency of mutant and wild-type reads. Missense and potential splice site variants in TSC1/TSC2 were compared to findings in
the LOVD Tuberous Sclerosis mutation database to help assess pathogenicity. Missense variants were also assessed using PolyPhen2 (37) and SIFT (38). Missense variants in \textit{MTOR} were assessed by comparison with the set of missense variants reported to cause mTORC1 activation (39). Thus, only variants in \textit{TSC1/TSC2} that were thought to be inactivating, and those in \textit{MTOR} that were thought to be activating were included in the subsequent analyses. For all other genes studied, variants were included in this analysis if they were not identified in any of the SNP variant servers listed above, and appeared to be inactivating based upon PolyPhen2 and SIFT analyses.

Assessment of copy number variation from exome sequencing data

Copy number variants were identified using RobustCNV, a tool developed by the CCGD at DFCI (Paul Van Hummelen, personal communication). RobustCNV includes a normalization step in which systematic bias in mapping depth is reduced or removed using a two-step process. First, robust regression is used to fit tumor mapping depth values against mapping depths from a panel of normals (PON) sampled with the same capture bait set. Observed values are normalized against predicted values calculated from the fitted model and expressed as log2 ratios. In the second step, remaining GC bias is removed using a loess fit (40). Normalized coverage data is then segmented using Circular Binary Segmentation (41) with the DNAcopy Bioconductor package and default settings. Finally, segments are assigned gain, loss, or normal-copy calls using a sample-specific cutoff calculated by multiplying the post-normalized median of within-segment standard deviations by a tuning factor (set to 0.5). Because this cutoff is likely to lead to high level of false positives in samples with noisy CNV data, we removed 12 samples with large variance (Median + 1 Standard Deviation = 0.37) to increase the reliability of the CNV calls within the sample cohort. In this study, a set of 18 copy-normal samples was used in the PON. Samples were verified as being copy-normal through a leave-one-out strategy where each sample was analyzed against the other putative normal samples using the
normalization approach outlined above. The results of this analysis were then manually reviewed and samples were filtered to include only the final set of 18 copy-normal samples in the PON. Copy number variants identified in PTEN, TSC1, TSC2, DEPDC5, NPRL2, STK11, and NPRL3 were then validated by visual inspection of the data using the Spotfire software platform (http://spotfire.tibco.com/).

Statistical Analysis

To investigate the association of selected mTOR pathway gene mutations with response to rapalog therapy, all patients with successful sequencing were included. Four distinct mutation categories were defined based on the mutational status of the pre-specified individual genes (mutated/wild-type) as 1) any mutation in MTOR, TSC1, TSC2; 2) any mutation in MTOR, TSC1, TSC2, PTEN; 3) any mutation in TSC1, TSC2; and 4) any mutation in MTOR, TSC1, TSC2, PTEN, PIK3CA. The primary endpoint was response status (responders vs. non-responders) to rapalog therapy. A secondary analysis explored the association between mutation and response in the subset of patients who had either PR or progressive disease (PD) only.

Patient characteristics were descriptively summarized by number and proportion (categorical data) or by mean, standard deviation and range (continuous data) according to response status. Comparisons between mutational status according to response to mTOR inhibitors were evaluated using a one-sided Fisher exact test for each mutation category with hypothesis that a mutation category was positively associated with treatment response. Similarly exploratory analysis assessed non-mTOR gene mutations in ARID1A, ATM, BAP1, KDM5C, PBRM1, SEDT3, TP53 and VHL with treatment response. An exploratory analysis was also performed to assess the association of copy number (CN) alterations with response.
All statistical analyses were performed using SAS v.9.2 (SAS Institute Inc., Cary, NC, USA) and R 3.2.1 (The R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient Characteristics

Patient characteristics are summarized in Table 1 (Table S1 provides complete details). Forty-three (54%) of 79 patients were responders. No Complete Responses were seen in this cohort. Thirty-eight (48%) were treated with everolimus and 41 (52%) received temsirolimus. Histologic subtypes included clear cell RCC (n=69, 87%) and non-clear cell RCC (n=10, 13%). Forty-nine of 79 (62%) had been previously treated, prior to rapalog therapy, and 44 of those 49 (89%) received VEGF targeted therapy (Table 2). None had prior rapalog therapy.

Mutation Findings

Next generation sequencing on FFPE DNA was used to analyze 560 genes for mutations (see Methods for details), including 18 genes involved in the PI3K – mTOR signaling pathway, and 8 genes not in that pathway that are commonly mutated in RCC. A summary of mutation findings for all 79 samples is presented in Figure 1 (see also Table S2 for mutations in all genes).

We first assessed our primary hypothesis that inactivating mutations in TSC1 or TSC2 and activating mutations in MTOR would be associated with response. Mutations in those three genes were found in 12 (28%) of 43 responders and in 4 (11%) of 36 non-responders (p=0.06) (Table 3). TSC1 and TSC2 mutations considered alone were also shown to be associated with response (21% for responders versus 6% from non-responders; p=0.05) (Table 3). When including all activating mutations in MTOR or PIK3CA, and all inactivating mutations in TSC1 or
TSC2, or PTEN, there was a significant association between response and mutation status; 19 (44%) responders had mutations in at least one of these 5 genes, while 8 (22%) non-responders had such mutations (one sided p=0.03, OR: 2.73).

When we restricted the analysis to the subset of patients with PR or PD status only, patients with mutations in any of TSC1, TSC2, or MTOR were more common in the PR group (5/12 PR vs. 4/36 PD, p=0.03) (Table 4).

As an exploratory analysis, we assessed the association between response and mutation status in all genes that were found to be commonly mutated in this set of samples (minimum mutation frequency of 4 of 79 patients (5%)): VHL, PBRM1, SETD2, KDM5C, BAP1, TP53, ATM, and ARID1A (Table S3). Out of 8 genes tested for association with response, only ATM showed a possible association with response. ATM mutations were observed in 5 of the non-responder patients and none of the responders, suggesting a negative association with response (p=0.02). Further investigation or independent analyses are needed to confirm this potential association.

Copy number variation and association with response

Genomic loss events leading to copy number variation are common in RCC. Therefore, we also examined the frequency and association between copy number loss and responses to rapalogs in this population. Copy number status for 7 genes (PTEN, TSC1, TSC2, DEPDC5, NPRL2, STK11, NPRL3) that are negative regulators of mTOR signaling was determined and association with response was assessed (Table S1, Table S4). No indication of association between copy number loss and response to rapalogs for any of these genes was observed (p>0.30 for all), with the exception of DEPDC5 for which single copy number loss was associated with lack of response to rapalogs (p=0.02).

Detailed scrutiny of mutation findings in responder patients
We examined the degree of response measured using RECIST criteria and the duration of response for these patients, as well the precise nature of the mutation present in TSC1/TSC2/MTOR in responders vs. non-responders to assess whether there was any association between a particular mutation and degree of response to rapalogs (measured as per cent reduction in tumor size, or the duration of response). Inactivating mutations in TSC1/TSC2 of all kinds (missense, nonsense, deletions, splice site) were observed in responding patients, at allele frequencies as low as 7% (Table S2). The two patients with TSC1 mutations who were progressors both had inactivating (out-of-frame) deletion mutations at relatively high allele frequency (Table S2). Two of the 5 MTOR mutations have been shown directly to be activating with respect to mTOR kinase activity (39), and were both seen in responders. The other 3 MTOR mutations were in mutation hotspot regions where nearby mutations have been shown to cause activation of mTOR, but were not directly studied (39); 1 was seen in a responder and 2 were in progressors. Furthermore, we found no association between mutation in any of these three genes and either the degree or duration of response.

Discussion

Tumor genetic analyses to identify mutations correlating with response to kinase inhibitor therapy has a rich history, including the most important discovery in therapy for lung adenocarcinoma in the past 30 years, the discovery of activating kinase mutations in EGFR and their correlation with response to the EGFR kinase inhibitors erlotinib and gefitinib (42). However despite the success of several targeted therapies for mRCC, no genetic or other biomarkers have been identified and validated to predict response to these agents, including VEGFR inhibitors and rapalogs.

mTORC1 and mTORC2 are kinase complexes containing mTOR which are located deep within signaling pathway cascades, downstream of both PI3K and MAPK signaling pathways.
The relative location of mTORC1 and mTORC2 within these signaling pathways, and their involvement in a variety of feedback or counter-regulatory effects, might suggest that their oncogenic effects are not as potent in comparison to a receptor tyrosine kinase such as EGFR. Nonetheless in mouse models, loss of TSC1/TSC2, proximate upstream regulators of mTORC1 acting through the RHEB GTPase, contributes to the development of a variety of cancers, including lung, kidney, prostate, and mesothelioma (43, 44). Furthermore, TSC1 and TSC2 are the causative genes of Tuberous Sclerosis Complex, a tumor suppressor gene syndrome in which a variety of progressive tumors that require therapeutic intervention are often identified.

In addition, through the NCI The Cancer Genome Atlas (TCGA) program, inactivating mutations in TSC1/TSC2 have been identified at low frequency in a wide variety of the common cancers, highest in bladder cancer (45). In addition, activating mutations in MTOR have also been identified in many different cancer types at low frequency, and at somewhat higher levels in RCC and endometrial carcinoma (cBio, http://www.cbioportal.org/) (46).

Furthermore, several case reports or small series have reported on the association between TSC1/TSC2/MTOR mutations and response to rapalog therapy in cancer. The first association of this kind was the response to rapalog therapy seen in PEComa, a rare sarcoma subtype in which TSC2 mutations are common (25, 26). Subsequently, a good response to everolimus (PFS > 13 months) was reported in an RCC patient with an inactivating TSC1 splice mutation (27). Later, an exceptional response to everolimus was reported in a single patient enrolled in a bladder cancer trial (subject remains in CR on everolimus > 4 years after initiation of therapy) (21). However, other patients on that trial with TSC1 mutations showed little or no evidence of response (21). More recently, exceptional responses to rapalog therapy have been seen in patients with MTOR and TSC2 mutations, in bladder and anaplastic thyroid cancer, respectively (23, 24).
TSC1 and MTOR mutations have also been reported recently in a series of 5 patients with RCC and exceptional responses to mTOR inhibitors (22). Of 5 patients studied, 2 had inactivating mutations in TSC1, 1 had an activating mutation in MTOR, and in 2 no mutations in the mTOR pathway were identified. Hence, this study already suggested that in RCC, good responses to rapalog therapy might occur without an identifiable underlying genetic event.

Here we explored the hypothesis that mutations in MTOR, TSC1 or TSC2 are associated with response to rapalog therapy. Despite collection of a substantial cohort, our findings were of marginal statistical significance. Mutations in these genes were more common in RCC patients who responded to rapalog therapy (12/43) than non-responders (4/36) (OR: 3.05; p=0.06); and 5 of 12 subjects with PR had mutations in MTOR, TSC1 or TSC2 vs. 4 of 36 primary refractory patients (OR: 5.28; p=0.03). Of note, in some of the responders, TSC1/TSC2 mutations were detected at low allele frequencies (as low as 7%), suggesting that they represent subclonal driver events that are both biologically and clinically relevant. Careful scrutiny of the extent and duration of response failed to suggest a correlation between truly exceptional responses and TSC1/TSC2/MTOR mutations. Considering the larger set of genes whose mutation might be associated with rapalog response, we found that mutations in TSC1/TSC2/MTOR/PIK3CA/PTEN were associated with response (OR: 2.73; p=0.03). However, even considering this larger set of genes, it is notable that 24 of 43 (56%) rapalog responders had no molecular finding to explain their response. We speculate that the good responses seen without TSC1/TSC2/MTOR mutation may be due to non-genetic mechanisms of mTOR dependence in these cases, including upstream signaling events and epigenetic effects (13). Further investigation is required. Mutations in ATM and heterozygous deletions of DEPDC5 were negatively associated with response in exploratory analyses, and also require further analysis.

Even though we evaluated a large number of RCC subjects treated with mTOR
inhibitors, our study has limitations. First, this is a relative select cohort of patients where we focused on the “extremes” of clinical outcomes. Second, intratumor heterogeneity is well-known in RCC, and may have compromised our ability to detect important mutations in the samples available to us (22, 47). However, studies of heterogeneity have reported that different cancer specimens derived from a single patient often have convergent mutations that result in activation of the same gene/pathway in different tumor samples (22, 47). In addition, our analysis of a single cancer specimen reflects clinical practice in that multiple biopsies from different sites are rarely available, and decisions on choice of therapy generally need to be made based on analysis of a single sample. Third, although we filtered our mutation findings to identify those we thought activating or inactivating in terms of their effects, some of the assessments were based on computational analyses, and we did not have direct evidence of functional effect in several cases (note that these functional effect assessments were made blinded to clinical outcome). Finally, mutations may have been missed due to the limited depth of read coverage and/or relatively low percent tumor content in some cases.

Mutations in several genes were identified at rates somewhat different from what was reported from the TCGA analysis of RCC (28). The most striking of these differences was for TSC1 for which we identified 10 mutations (13%), while fewer than 1% were identified in the TCGA analysis. This may reflect many differences in the two populations, including presence of metastatic disease and selection of rapallog responders in our cohort.

In conclusion, mutations in MTOR, TSC1 or TSC2 were more common in RCC patients who experienced clinical benefit from everolimus or temsirolimus than in those with rapid progression in this large cohort of mRCC patients. However, the majority of mRCC patients with response to rapallogs had no mutation identified in these three genes or in PIK3CA or PTEN, and hence remain unexplained at the molecular level. These findings suggest that a personalized medicine approach may have value in RCC when an appropriate (inactivating or
activating) mutation is identified in one of these five genes, and make selection of an mTOR inhibitor for treatment a higher clinical priority than in patients without such mutations. However, lack of a mutation in these five genes does not exclude the possibility of a good, durable response to mTOR inhibitor therapy in mRCC.

Acknowledgements

We thank Pfizer Inc for their important contribution of both specimens and clinical data from the temsirolimus trial; and the Kidney Cancer Association. We thank Dr. Paul Van Hummelen and Dr. Samuel S. Hunter at the CCGD (DFCI) for assistance with sequencing data analysis.
References

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Response Status</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-responder</td>
<td>Responder</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=36) n(%)</td>
<td>(n=43) n(%)</td>
<td>(n=79)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Female 11(31)</td>
<td>11(26)</td>
<td>22(28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male 25(69)</td>
<td>32(74)</td>
<td>57(72)</td>
<td></td>
</tr>
<tr>
<td>Age at Diagnosis of metastatic disease</td>
<td>Mean(SD) 56.6(10.0)</td>
<td>58.0(10.0)</td>
<td>57.4(10.0)</td>
<td></td>
</tr>
<tr>
<td>(years)</td>
<td>[Min, Max] [35,78]</td>
<td>[42,79]</td>
<td>[35,79]</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>Clear Cell RCC 31(86)</td>
<td>38(88)</td>
<td>69(87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Clear Cell RCC 4(11)</td>
<td>5(12)</td>
<td>9(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unclassified RCC 1(3)</td>
<td>0(0)</td>
<td>1(1)</td>
<td></td>
</tr>
<tr>
<td>Prognostic risk score (MSKCC)</td>
<td>Good 4(11)</td>
<td>8(19)</td>
<td>12(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate 13(36)</td>
<td>25(58)</td>
<td>38(48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor 19(53)</td>
<td>10(23)</td>
<td>29(37)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Everolimus 14 (38.8)</td>
<td>24 (55.8)</td>
<td>38(48.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temsirolimus 22 (61.1)</td>
<td>19(44.1)</td>
<td>41(51.8)</td>
<td></td>
</tr>
<tr>
<td>Best response status</td>
<td>PD 36(100)</td>
<td>0(0)</td>
<td>36(46)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR 0(0)</td>
<td>12(28)</td>
<td>12(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD 0(0)</td>
<td>31(72)</td>
<td>31(39)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Previous treatment experiences

<table>
<thead>
<tr>
<th>Prior treatment</th>
<th>Non-Responders n=21 n(%)</th>
<th>Responders n=28 n(%)</th>
<th>Total (N=49) n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF-TT</td>
<td>19 (90)</td>
<td>25 (89)</td>
<td>44 (89)</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>14 (66)</td>
<td>20 (71)</td>
<td>34 (69)</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>5 (23)</td>
<td>4 (14)</td>
<td>9 (18)</td>
</tr>
</tbody>
</table>

Note that 30 of the 79 patients studied here received a rapalog as their initial treatment, and are not included in this table.
Table 3. Association of mTOR pathway mutational status and response

<table>
<thead>
<tr>
<th>Mutation category</th>
<th>Mutations</th>
<th>Non-Responders (n=36)</th>
<th>Responders (n=43)</th>
<th>Fisher exact p-value(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTOR, TSC1, TSC2</td>
<td>No(ref)</td>
<td>32(89)</td>
<td>31(72)</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>4(11)</td>
<td>12(28)</td>
<td></td>
</tr>
<tr>
<td>MTOR, TSC1, TSC2, PTEN</td>
<td>No(ref)</td>
<td>28(78)</td>
<td>25(58)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8(22)</td>
<td>18(42)</td>
<td></td>
</tr>
<tr>
<td>TSC1, TSC2</td>
<td>No(ref)</td>
<td>34(94)</td>
<td>34(79)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2(6)</td>
<td>9(21)</td>
<td></td>
</tr>
<tr>
<td>TSC1, TSC2, MTOR, PTEN, PIK3CA</td>
<td>No(ref)</td>
<td>28(78)</td>
<td>24(56)</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8(22)</td>
<td>19(44)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) A one-sided Fisher exact test was used to assess the association between mutation and response status, assuming the alternative hypothesis was that a mutation was positively associated with being a responder.
Table 4. Subgroup analysis (N=48): association of mTOR pathway mutation status by best response groups (PR vs PD).

<table>
<thead>
<tr>
<th>Mutation category</th>
<th>Mutation s</th>
<th>Best response group</th>
<th>Fisher’s exact p-value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PD (n=36) n(%)</td>
<td>PR (n=12) n(%)</td>
</tr>
<tr>
<td>MTOR, TSC1, TSC2</td>
<td>No(ref)</td>
<td>32(89)</td>
<td>7(58)</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>4(11)</td>
<td>5(42)</td>
</tr>
<tr>
<td>MTOR, TSC1, TSC2, PTEN</td>
<td>No(ref)</td>
<td>28(78)</td>
<td>6(50)</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>8(22)</td>
<td>6(50)</td>
</tr>
<tr>
<td>TSC1, TSC2</td>
<td>No(ref)</td>
<td>34(94)</td>
<td>9(75)</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>2(6)</td>
<td>3(25)</td>
</tr>
<tr>
<td>TSC1, TSC2, MTOR, PTEN, PIK3CA</td>
<td>No(ref)</td>
<td>28(78)</td>
<td>6(50)</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>8(22)</td>
<td>6(50)</td>
</tr>
</tbody>
</table>

^aA one sided Fisher exact test was used to assess the association between mutation and response status, assuming the alternative hypothesis was that a mutation was positively associated with being a responder.
Figure legends

Figure 1. Co-mutation plot of subjects and mutations. A plot of all subjects (left to right) with their respective responses, histology, and mutations is shown.
Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic Renal Cell Carcinoma

Clin Cancer Res Published OnlineFirst February 1, 2016.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/01/30/1078-0432.CCR-15-2631.DC1.html

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.